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. . . . . .

Disclaimer

The slides are intended to serve as records for a recitation for math
244 course. It should never serve as any replacement for formal
lectures or as any reviewing material. The author is not responsible
for consequences brought by inappropriate use.

There may be errors. Use them at your own discretion. Anyone who
notify me with an error will get some award in grade points.
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. . . . . .

Complexification for nonhomog. ODE

Let f (r) = anr
n + an−1r

n−1 + · · ·+ a1r + a0.

Denote by D the derivative
operator d/dt.
For the nonhomogeneous ODE

f (D)y = any
(n) + an−1y

(n−1) + a1y
′ + a0y = g(t)

If g(t) = eαt cosβt(knt
n + · · ·+ k0), then

Consider the complexified ODE

f (D)ỹ = anỹ
(n) + an−1ỹ

(n−1) + a1ỹ
′ + a0ỹ = g̃(t)

where g̃(t) = e(α+iβ)t(knt
n + · · ·+ k0).

Find a particular solution P̃(t) of the complexified ODE by first trying
the template

P̃(t) = e(α+iβ)t(Ant
n + · · ·+ A0).

If the first try fails then multiply by a t and try again, and so on, until
you succeed.
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f (D)ỹ = anỹ
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f (D)ỹ = anỹ
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P(t) = ImP̃(t),

which would be a particular solution to this ODE.
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. . . . . .

Summary of the method of undetermined coefficient

So to sum up,

for the nonhomogeneous ODE

f (D)y = any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = g(t)

Find its complementary solutions by solving the characteristic
equation f (r) = 0.

By separating terms and complexification, we only need to focus the
case when

g(t) = eαtpm(t)

where pm(t) is a polynomial of degree m.
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Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

f (D)y = any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = g(t)

One can find a particular solution

by trying

P(t) = eαt(Amt
m + Am−1t

m−1 + · · ·+ A1t + A0).

Plug P(t) into the ODE, compute f (D)P and compare it with g(t)
to determine the coefficients Am,Am−1, · · · ,A0.

If the first try fails, multiply P(t) by t and try again. If second try
fails, multiply P(t) by t and try again, ....

Question: How many times do you have to fail?
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. . . . . .

How many times do you have to try

.
Theorem
..
......If α is a root

of multiplicity s, then the first s tries fail.

Example:
y ′′′ − 3y ′′ + 3y ′ + y = et

The characteristic equation: r3 − 3r2 + 3r − 1 = (r − 1)3 = 0. So
r = 1 with multiplicity 3. So The complementary solution is

y(t) = C1e
t + C2te

t + C3t
2et .

The first try P(t) = Aet fails since et is in the complementary sol’n.

Similarly the second try P(t) = Atet fails.

Similarly the third try P(t) = At2et fails.

The fourth try, P(t) = At3et would succeed.

Remark: If g(t) = tet , you still need to try the fourth time, although you
don’t see why the third try fails from the above argument.
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. . . . . .

Modification of the algorithm

.
Theorem
..
......If α is a root of multiplicity s, then the first s tries fail.

Challenging Problem:

Use Exponential Shift Law to prove this theorem.

Base on the theorem, one can now modify the algorithm as follows.

For the ODE

f (D)y = any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = eαtpm(t),

if α is a root of the characteristic equation with multiplicity s, one
can find a particular solution by trying

P(t) = tseαt(Amt
m + Am−1t

m−1 + · · ·+ A1t + A0).

Plug P(t) into the ODE, compute f (D)P and compare it with g(t)
to determine the coefficients Am,Am−1, · · · ,A0.
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. . . . . .

Homework Problem 4.3.2

Find the general solution to the ODE

y (4) − y = 3t + cos t

The characteristic polynomial is

f (r) = r4 − 1

And by setting f (r) = 0 one obtains four roots r = 1,−1, i ,−i . Then
the complementary solution is

y(t) = C1e
t + C2e

−t + C3 cos t + C4 sin t.

One can easily find the particular solution for the ODE to the first
term

y (4) − y = 3t

Since 0 is not a root of the char. eqn, the first try P(t) = At + B
would succeed.
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. . . . . .

Homework Problem 4.3.2

Find the general solution to the ODE

y (4) − y = 3t + cos t

Compute f (D)P

f (D)P = −At − B

= 3t ⇒ A = −3,B = 0

So a particular solution is P(t) = −3t

Now let’s look at the ODE to the second term

y (4) − y = cos t

Complexify!
ỹ (4) − ỹ = e it

Since i is a root of multiplicity 1, the first try will fail and one should
try P̃(t) = Ate it .
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Homework Problem 4.3.2

Simplify f (D)P̃ by exponential shift law:

f (D)P̃ = f (D)(e itAt)

= e it(f (D + i)At)

Compute f (D + i)At: Since f (r) = (r + 1)(r − 1)(r + i)(r − i), one
has

f (D + i)At = (D + i + 1)(D + i − 1)(D + 2i)DAt.

Since D(At) = d
dtAt = A, one has

f (D + i)At = (D + i + 1)(D + i − 1)(D + 2i)A

Notice that DA = 0, then one can proceed as

(D + i + 1)(D + i − 1)(D + 2i)A = (D + i + 1)(D + i − 1)(0 + 2iA)

= (D + i + 1)(0 + (i − 1)2iA)

= 0 + (i + 1)(i − 1)2iA = −4iA

and therefore f (D)P = e it f (D + i)At = −4iAe it
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. . . . . .

Homework Problem 4.3.2

Determine A by f (D)P̃ = e it ,

namely,

−4iAe it = e it ⇒ −4iA = 1 ⇒ A =
1

4
i .

Recover the particular solution to the original ODE. We should
choose the real part of P̃. Since

P̃(t) = Ate it =
1

4
i(cos t + i sin t),

the first term will have an i attached. So we only care about the
second term, which then gives

P(t) = −1

4
t sin t.

Finally write the geneal solution:

y(t) = C1e
t + C2e

−t + C3 cos t + C4 sin t − 3t − 1

4
t sin t.
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. . . . . .

Book Problem 4.3.16

Find the general solution to the ODE

y (4) + 4y ′′ = sin 2t + tet + 4

The characteristic polynomial is

f (r) = r4 + 4r2

By setting f (r) = 0 one obtains four roots r = 0, 0, 2i ,−2i . Then the
complementary solution is

y(t) = C1 + C2t + C3 cos 2t + C4 sin 2t.

Look at the ODE to the first term

y (4) + 4y ′′ = sin 2t.

Complexify!
ỹ (4) + 4ỹ ′′ = e2it
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Book Problem 4.3.16

Find the general solution to the ODE

y (4) + 4y ′′ = sin 2t + tet + 4

Since 2i is a root of multiplicity one,

the template P̃(t) = Ae it will
fail and one should try P̃(t) = Ate it .
Compute f (D)P̃ . Note that f (r) = r2(r + 2i)(r − 2i).

f (D)P̃ = f (D)(e2itAt)

= e2it f (D + 2i)At

= e2it(D + 2i)2(D + 2i + 2i)DAt

= e2it(D + 2i)2(D + 4i)A

= e2it(2i)2(4iA) = −16iAe2it

Since f (D)P̃ = e2it , one has

−16iAe2it = e2it ⇒ A =
1

16
i
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Book Problem 4.3.16

Find the general solution to the ODE

y (4) + 4y ′′ = sin 2t + tet + 4,

Recover the particular solution to the original ODE. By our scenario,
we should choose the imagine part of P̃. Since

P̃(t) = Ate2it =
1

16
i(cos 2t + i sin 2t),

the second term won’t have an i attached. So we only care about the
first term, which then gives

P(t) =
1

16
cos 2t.

Now look at the ODE to the second term

f (D)y = tet

Since 1 is not a root of the char. eqn., the first try
P(t) = (At + B)et would succeed.
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Book Problem 4.3.16

Compute f (D)P .

Note that f (r) = r4 + 2r2.

f (D)P = f (D)(et(At + B))

= et f (D + 1)(At + B)

= et((D + 1)4 + 4(D + 1)2)(At + B)

= et(D4 + 4D3 + 6D2 + 4D + 1 + 4D2 + 8D + 4)(At + B)

Since we don’t care D2(At + B) and all higher powers, we have

f (D)P = et(4D + 1 + 8D + 4)(At + B)

= et(12D + 5)(At + B)

= et(12A+ 5At + 5B) = tet

So 5A = 1, 12A+ 5B = 0 ⇒ A = 1/5,B = −12A/5 = −12/25.

So the particular soution to this part is

P(t) = et(
1

5
t − 12

25
)
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. . . . . .

Book Problem 4.3.16

Find the general solution to the ODE

y (4) + 4y ′′ = sin 2t + tet + 4

Finally look at the ODE to the last term,

y (4) + 4y ′′ = 4

IMPORTANT REMARK: Here you should treat 4 as 4e0t .

Since 0 is a root of the char. eqn. with multiplicity 2, the first try and
the second try fails, and the template you should use is P(t) = At2.

Compute f (D)P :

f (D)P = f (D)At2 = (D4 + 4D2)(At2)

= 0 + 4(2A) = 8A = 4 ⇒ A = 1/2
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Book Problem 4.3.16

Find the general solution to the ODE

y (4) + 4y ′′ = sin 2t + tet + 4

So the particular solution to this term is

P(t) = 1
2 t

2.

And thus the general solution is

y(t) = C1 + C2t + C3 cos 2t + C4 sin 2t +
1

16
t cos t

+et(
1

5
t − 12

25
) +

1

2
t2.
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. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial

is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2

= r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i .

So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn,

the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

The characteristic polynomial is

f (r) = r4 + 2r3 + 2r2 = r2(r2 + 2r + 2)

The roots are r = 0, 0,−1 + i ,−1− i . So the complementary solution
is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

Look at the ODE to the first term:

y (4) + 2y ′′′ + 2y ′′ = 3et .

Since 1 is not a root of the char. eqn, the first try P(t) = Aet would
succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 19 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

Compute f (D)P :

f (D)P = f (D)Aet = (D4 + 2D3 + 2D2)Aet

= (A+ 2A+ 2A)et = 5Aet = 3et ⇒ A = 3/5

(Don’t be silly, you don’t need exponential shift law here!)

So the particular solution for the first term is P(t) = 3/5et .

Look at the ODE to the second term:

y (4) + 2y ′′′ + 2y ′′ = 2te−t .

Since −1 is not a root to the char. eqn., the first try
P(t) = (At + B)e−t would succeed.
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. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

So the particular solution to the second part

is P(t) = (2t + 4)e−t .

Look at the ODE to the third term:

y (4) + 2y ′′′ + 2y ′′ = e−t sin t.

Complexify:

ỹ (4) + 2ỹ ′′′ + 2ỹ ′′ = e−te it = e(−1+i)t .

And we will need the imaginary part.

Since −1 + i is a root to the char. eqn., the first try would fail and
the second try P̃(t) = Ate(−1+i)t would succeed.
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ỹ (4) + 2ỹ ′′′ + 2ỹ ′′ = e−te it = e(−1+i)t .

And we will need the imaginary part.

Since −1 + i is a root to the char. eqn., the first try would fail and
the second try P̃(t) = Ate(−1+i)t would succeed.

Fei Qi (Rutgers University) Recitation 8: Complexification March 28, 2014 22 / 26



. . . . . .

Book Problem 4.3.18

Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

So the particular solution to the second part is P(t) = (2t + 4)e−t .

Look at the ODE to the third term:

y (4) + 2y ′′′ + 2y ′′ = e−t sin t.

Complexify:
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Find the general solution to the ODE

y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

Compute f (D)P̃ .

Notice f (r) = r2(r + 1 + i)(r + 1− i):

f (D)P̃ = f (D)(e(−1+i)tAt)

= e(−1+i)t f (D − 1 + i)At

= e(−1+i)t(D − 1 + i)2(D + 2i)DAt

= e(−1+i)t(D − 1 + i)2(D + 2i)A

= e(−1+i)t(D − 1 + i)2(2iA)

= e(−1+i)t(−1 + i)2(2iA)

= e(−1+i)t(1− 1− 2i)(2iA)

= e(−1+i)t4A = e(−1+i)t ⇒ 4A = 1 ⇒ A = 1/4.
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y (4) + 2y ′′′ + 2y ′′ = 3et + 2te−t + e−t sin t

So

P̃(t) =
1

4
te(−1+i)t =

1

4
te−t(cos t + i sin t)

So the imaginary part

P(t) =
1

4
te−t sin t

is a particular solution for the ODE to the third term.

Then the general solution to our ODE is

y(t) = C1 + C2t + e−t(C3 cos t + C4 sin t)

+3/5et + (2t + 4)e−t +
1

4
te−t sin t.
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Remarks

For computing the term f (D)P ,

there does not exist a way that is
convenient for all the cases. Depending on the situation, one might
need to choose different ways.

In particular, the exponential-shift law is used to simplify the
computation. If it is simpler not to use it, then don’t use it.

For (a+ b)n, here are some formulas you should know

(a+ b)2 = a2 + 2ab + b2

(a+ b)3 = a3 + 3a2b + 3ab2 + b3

(a+ b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

Certainly there exists a general pattern, namely the beautiful binomial
expansion theorem. Please read the following interesting webpage on
a website called ”mathisfun”
http://www.mathsisfun.com/algebra/binomial-theorem.html
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