What you should learn from Recitation 8: Application of complexification

Fei Qi

Rutgers University
fq15@math.rutgers.edu

March 28, 2014

Disclaimer

- The slides are intended to serve as records for a recitation for math 244 course. It should never serve as any replacement for formal lectures or as any reviewing material. The author is not responsible for consequences brought by inappropriate use.
- There may be errors. Use them at your own discretion. Anyone who notify me with an error will get some award in grade points.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

- Find a particular solution $\tilde{P}(t)$ of the complexified ODE

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

- Find a particular solution $\tilde{P}(t)$ of the complexified ODE by first trying the template

$$
\tilde{P}(t)=e^{(\alpha+i \beta) t}\left(A_{n} t^{n}+\cdots+A_{0}\right)
$$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

- Find a particular solution $\tilde{P}(t)$ of the complexified ODE by first trying the template

$$
\tilde{P}(t)=e^{(\alpha+i \beta) t}\left(A_{n} t^{n}+\cdots+A_{0}\right)
$$

If the first try fails

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

- Find a particular solution $\tilde{P}(t)$ of the complexified ODE by first trying the template

$$
\tilde{P}(t)=e^{(\alpha+i \beta) t}\left(A_{n} t^{n}+\cdots+A_{0}\right)
$$

If the first try fails then multiply by a t and try again,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

- Find a particular solution $\tilde{P}(t)$ of the complexified ODE by first trying the template

$$
\tilde{P}(t)=e^{(\alpha+i \beta) t}\left(A_{n} t^{n}+\cdots+A_{0}\right)
$$

If the first try fails then multiply by a t and try again, and so on,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$.
For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

If $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- Consider the complexified ODE

$$
f(D) \tilde{y}=a_{n} \tilde{y}^{(n)}+a_{n-1} \tilde{y}^{(n-1)}+a_{1} \tilde{y}^{\prime}+a_{0} \tilde{y}=\tilde{g}(t)
$$

where $\tilde{g}(t)=e^{(\alpha+i \beta) t}\left(k_{n} t^{n}+\cdots+k_{0}\right)$.

- Find a particular solution $\tilde{P}(t)$ of the complexified ODE by first trying the template

$$
\tilde{P}(t)=e^{(\alpha+i \beta) t}\left(A_{n} t^{n}+\cdots+A_{0}\right)
$$

If the first try fails then multiply by a t and try again, and so on, until you succeed.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t}$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- You solve the same complexified ODE

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- You solve the same complexified ODE and obtain the same complex solution $\tilde{P}(t)$.

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- You solve the same complexified ODE and obtain the same complex solution $\tilde{P}(t)$.
- Instead of taking the real part,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- You solve the same complexified ODE and obtain the same complex solution $\tilde{P}(t)$.
- Instead of taking the real part, now take the imaginary part of $\tilde{P}(t)$,

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- You solve the same complexified ODE and obtain the same complex solution $\tilde{P}(t)$.
- Instead of taking the real part, now take the imaginary part of $\tilde{P}(t)$, namely

$$
P(t)=\operatorname{Im} \tilde{P}(t)
$$

Complexification for nonhomog. ODE

Let $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$. Denote by D the derivative operator $d / d t$. For the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t)
$$

(when $g(t)=e^{\alpha t} \cos \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$)

- After you obtained $\tilde{P}(t)$, then

$$
P(t)=\operatorname{Re} \tilde{P}(t)
$$

is a particular solution to the original ODE.
If $g(t)=e^{\alpha t} \sin \beta t\left(k_{n} t^{n}+\cdots+k_{0}\right)$, then

- You solve the same complexified ODE and obtain the same complex solution $\tilde{P}(t)$.
- Instead of taking the real part, now take the imaginary part of $\tilde{P}(t)$, namely

$$
P(t)=\operatorname{Im} \tilde{P}(t)
$$

which would be a particular solution to this ODE.

Summary of the method of undetermined coefficient

So to sum up,

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- Find its complementary solutions

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- Find its complementary solutions by solving the characteristic equation $f(r)=0$.

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- Find its complementary solutions by solving the characteristic equation $f(r)=0$.
- By separating terms and complexification,

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- Find its complementary solutions by solving the characteristic equation $f(r)=0$.
- By separating terms and complexification, we only need to focus the case

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- Find its complementary solutions by solving the characteristic equation $f(r)=0$.
- By separating terms and complexification, we only need to focus the case when

$$
g(t)=e^{\alpha t} p_{m}(t)
$$

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- Find its complementary solutions by solving the characteristic equation $f(r)=0$.
- By separating terms and complexification, we only need to focus the case when

$$
g(t)=e^{\alpha t} p_{m}(t)
$$

where $p_{m}(t)$ is a polynomial of degree m.

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE,

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$ to determine the coefficients $A_{m}, A_{m-1}, \cdots, A_{0}$.

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$ to determine the coefficients $A_{m}, A_{m-1}, \cdots, A_{0}$.

- If the first try fails,

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$ to determine the coefficients $A_{m}, A_{m-1}, \cdots, A_{0}$.

- If the first try fails, multiply $P(t)$ by t and try again.

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$ to determine the coefficients $A_{m}, A_{m-1}, \cdots, A_{0}$.

- If the first try fails, multiply $P(t)$ by t and try again. If second try fails, multiply $P(t)$ by t and try again,

Summary of the method of undetermined coefficient

So to sum up, for the nonhomogeneous ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

- One can find a particular solution by trying

$$
P(t)=e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$ to determine the coefficients $A_{m}, A_{m-1}, \cdots, A_{0}$.

- If the first try fails, multiply $P(t)$ by t and try again. If second try fails, multiply $P(t)$ by t and try again, ...
Question: How many times do you have to fail?

How many times do you have to try

Theorem
 If α is a root

How many times do you have to try

Theorem
 If α is a root of multiplicity s,

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1$

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}$

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.
- Similarly the second try $P(t)=A t e^{t}$ fails.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.
- Similarly the second try $P(t)=A t e^{t}$ fails.
- Similarly the third try $P(t)=A t^{2} e^{t}$ fails.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.
- Similarly the second try $P(t)=A t e^{t}$ fails.
- Similarly the third try $P(t)=A t^{2} e^{t}$ fails.
- The fourth try, $P(t)=A t^{3} e^{t}$ would succeed.

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.
- Similarly the second try $P(t)=$ Ate ${ }^{t}$ fails.
- Similarly the third try $P(t)=A t^{2} e^{t}$ fails.
- The fourth try, $P(t)=A t^{3} e^{t}$ would succeed.

Remark: If $g(t)=t e^{t}$,

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.
- Similarly the second try $P(t)=$ Ate e^{t} fails.
- Similarly the third try $P(t)=A t^{2} e^{t}$ fails.
- The fourth try, $P(t)=A t^{3} e^{t}$ would succeed.

Remark: If $g(t)=t e^{t}$, you still need to try the fourth time,

How many times do you have to try

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Example:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}+y=e^{t}
$$

- The characteristic equation: $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. So $r=1$ with multiplicity 3 . So The complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}
$$

- The first try $P(t)=A e^{t}$ fails since e^{t} is in the complementary sol'n.
- Similarly the second try $P(t)=$ Ate ${ }^{t}$ fails.
- Similarly the third try $P(t)=A t^{2} e^{t}$ fails.
- The fourth try, $P(t)=A t^{3} e^{t}$ would succeed.

Remark: If $g(t)=t e^{t}$, you still need to try the fourth time, although you don't see why the third try fails from the above argument.

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem:

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.

Modification of the algorithm

Theorem
 If α is a root of multiplicity s, then the first s tries fail.

Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s,

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s}
$$

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s} e^{\alpha t}
$$

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s} e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s} e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE,

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s} e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s} e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$

Modification of the algorithm

Theorem

If α is a root of multiplicity s, then the first s tries fail.
Challenging Problem: Use Exponential Shift Law to prove this theorem.
Base on the theorem, one can now modify the algorithm as follows.

- For the ODE

$$
f(D) y=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=e^{\alpha t} p_{m}(t)
$$

if α is a root of the characteristic equation with multiplicity s, one can find a particular solution by trying

$$
P(t)=t^{s} e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{1} t+A_{0}\right)
$$

Plug $P(t)$ into the ODE, compute $f(D) P$ and compare it with $g(t)$ to determine the coefficients $A_{m}, A_{m-1}, \cdots, A_{0}$.

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$ one obtains four roots $r=1,-1, i,-i$.

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$ one obtains four roots $r=1,-1, i,-i$. Then the complementary solution

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$ one obtains four roots $r=1,-1, i,-i$. Then the complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$ one obtains four roots $r=1,-1, i,-i$. Then the complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t
$$

- One can easily find the particular solution for the ODE to the first term

$$
y^{(4)}-y=3 t
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$ one obtains four roots $r=1,-1, i,-i$. Then the complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t
$$

- One can easily find the particular solution for the ODE to the first term

$$
y^{(4)}-y=3 t
$$

Since 0 is not a root of the char. eqn,

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}-1
$$

And by setting $f(r)=0$ one obtains four roots $r=1,-1, i,-i$. Then the complementary solution is

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t
$$

- One can easily find the particular solution for the ODE to the first term

$$
y^{(4)}-y=3 t
$$

Since 0 is not a root of the char. eqn, the first try $P(t)=A t+B$ would succeed.

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

$$
y^{(4)}-y=\cos t
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

$$
y^{(4)}-y=\cos t
$$

- Complexify!

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

$$
y^{(4)}-y=\cos t
$$

- Complexify!

$$
\tilde{y}^{(4)}-\tilde{y}=e^{i t}
$$

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

$$
y^{(4)}-y=\cos t
$$

- Complexify!

$$
\tilde{y}^{(4)}-\tilde{y}=e^{i t}
$$

- Since i is a root of multiplicity 1 ,

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

$$
y^{(4)}-y=\cos t
$$

- Complexify!

$$
\tilde{y}^{(4)}-\tilde{y}=e^{i t}
$$

- Since i is a root of multiplicity 1 , the first try will fail

Homework Problem 4.3.2

Find the general solution to the ODE

$$
y^{(4)}-y=3 t+\cos t
$$

- Compute $f(D) P$

$$
f(D) P=-A t-B=3 t \Rightarrow A=-3, B=0
$$

So a particular solution is $P(t)=-3 t$

- Now let's look at the ODE to the second term

$$
y^{(4)}-y=\cos t
$$

- Complexify!

$$
\tilde{y}^{(4)}-\tilde{y}=e^{i t}
$$

- Since i is a root of multiplicity 1 , the first try will fail and one should try $\tilde{P}(t)=A t e^{i t}$.

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
f(D) \tilde{P}
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
f(D) \tilde{P}=f(D)\left(e^{i t} A t\right)
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$:

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$,

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i)
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$,

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$,

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
(D+i+1)(D+i-1)(D+2 i) A
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
(D+i+1)(D+i-1)(D+2 i) A=(D+i+1)(D+i-1)(0+2 i A)
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
\begin{aligned}
(D+i+1)(D+i-1)(D+2 i) A & =(D+i+1)(D+i-1)(0+2 i A) \\
& =(D+i+1)(0+(i-1) 2 i A)
\end{aligned}
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
\begin{aligned}
(D+i+1)(D+i-1)(D+2 i) A & =(D+i+1)(D+i-1)(0+2 i A) \\
& =(D+i+1)(0+(i-1) 2 i A) \\
& =0+(i+1)(i-1) 2 i A
\end{aligned}
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
\begin{aligned}
(D+i+1)(D+i-1)(D+2 i) A & =(D+i+1)(D+i-1)(0+2 i A) \\
& =(D+i+1)(0+(i-1) 2 i A) \\
& =0+(i+1)(i-1) 2 i A=-4 i A
\end{aligned}
$$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
\begin{aligned}
(D+i+1)(D+i-1)(D+2 i) A & =(D+i+1)(D+i-1)(0+2 i A) \\
& =(D+i+1)(0+(i-1) 2 i A) \\
& =0+(i+1)(i-1) 2 i A=-4 i A
\end{aligned}
$$

and therefore $f(D) P=e^{i t} f(D+i) A t$

Homework Problem 4.3.2

- Simplify $f(D) \tilde{P}$ by exponential shift law:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{i t} A t\right) \\
& =e^{i t}(f(D+i) A t)
\end{aligned}
$$

- Compute $f(D+i) A t$: Since $f(r)=(r+1)(r-1)(r+i)(r-i)$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) D A t
$$

Since $D(A t)=\frac{d}{d t} A t=A$, one has

$$
f(D+i) A t=(D+i+1)(D+i-1)(D+2 i) A
$$

Notice that $D A=0$, then one can proceed as

$$
\begin{aligned}
(D+i+1)(D+i-1)(D+2 i) A & =(D+i+1)(D+i-1)(0+2 i A) \\
& =(D+i+1)(0+(i-1) 2 i A) \\
& =0+(i+1)(i-1) 2 i A=-4 i A
\end{aligned}
$$

and therefore $f(D) P=e^{i t} f(D+i) A t=-4 i A e^{i t}$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$,

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t}
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE.

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}.

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached.

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached. So we only care about the second term,

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached. So we only care about the second term, which then gives

$$
P(t)=-\frac{1}{4} t \sin t
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached. So we only care about the second term, which then gives

$$
P(t)=-\frac{1}{4} t \sin t
$$

- Finally write the geneal solution:

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached. So we only care about the second term, which then gives

$$
P(t)=-\frac{1}{4} t \sin t
$$

- Finally write the geneal solution:

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached. So we only care about the second term, which then gives

$$
P(t)=-\frac{1}{4} t \sin t
$$

- Finally write the geneal solution:

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t-3 t
$$

Homework Problem 4.3.2

- Determine A by $f(D) \tilde{P}=e^{i t}$, namely,

$$
-4 i A e^{i t}=e^{i t} \Rightarrow-4 i A=1 \Rightarrow A=\frac{1}{4} i
$$

- Recover the particular solution to the original ODE. We should choose the real part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{i t}=\frac{1}{4} i(\cos t+i \sin t)
$$

the first term will have an i attached. So we only care about the second term, which then gives

$$
P(t)=-\frac{1}{4} t \sin t
$$

- Finally write the geneal solution:

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} \cos t+C_{4} \sin t-3 t-\frac{1}{4} t \sin t
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$. Then the complementary solution is

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$. Then the complementary solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$. Then the complementary solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t
$$

- Look at the ODE to the first term

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$. Then the complementary solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t
$$

- Look at the ODE to the first term

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$. Then the complementary solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t
$$

- Look at the ODE to the first term

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t
$$

- Complexify!

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+4 r^{2}
$$

By setting $f(r)=0$ one obtains four roots $r=0,0,2 i,-2 i$. Then the complementary solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t
$$

- Look at the ODE to the first term

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t
$$

- Complexify!

$$
\tilde{y}^{(4)}+4 \tilde{y}^{\prime \prime}=e^{2 i t}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
f(D) \tilde{P}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
f(D) \tilde{P}=f(D)
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
f(D) \tilde{P}=f(D)\left(e^{2 i t} A t\right)
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t}
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i)
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i)
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i) A
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i) A \\
& =e^{2 i t}(2 i)^{2}(4 i A)
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i) A \\
& =e^{2 i t}(2 i)^{2}(4 i A)=-16 i A e^{2 i t}
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i) A \\
& =e^{2 i t}(2 i)^{2}(4 i A)=-16 i A e^{2 i t}
\end{aligned}
$$

- Since $f(D) \tilde{P}=e^{2 i t}$,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i) A \\
& =e^{2 i t}(2 i)^{2}(4 i A)=-16 i A e^{2 i t}
\end{aligned}
$$

- Since $f(D) \tilde{P}=e^{2 i t}$, one has

$$
-16 i A e^{2 i t}=e^{2 i t}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Since $2 i$ is a root of multiplicity one, the template $\tilde{P}(t)=A e^{i t}$ will fail and one should try $\tilde{P}(t)=A t e^{i t}$.
- Compute $f(D) \tilde{P}$. Note that $f(r)=r^{2}(r+2 i)(r-2 i)$.

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{2 i t} A t\right) \\
& =e^{2 i t} f(D+2 i) A t \\
& =e^{2 i t}(D+2 i)^{2}(D+2 i+2 i) D A t \\
& =e^{2 i t}(D+2 i)^{2}(D+4 i) A \\
& =e^{2 i t}(2 i)^{2}(4 i A)=-16 i A e^{2 i t}
\end{aligned}
$$

- Since $f(D) \tilde{P}=e^{2 i t}$, one has

$$
-16 i A e^{2 i t}=e^{2 i t} \Rightarrow A=\frac{1}{16} i
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached. So we only care about the first term,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached. So we only care about the first term, which then gives

$$
P(t)=\frac{1}{16} \cos 2 t
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached. So we only care about the first term, which then gives

$$
P(t)=\frac{1}{16} \cos 2 t
$$

- Now look at the ODE to the second term

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached. So we only care about the first term, which then gives

$$
P(t)=\frac{1}{16} \cos 2 t
$$

- Now look at the ODE to the second term

$$
f(D) y=t e^{t}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached. So we only care about the first term, which then gives

$$
P(t)=\frac{1}{16} \cos 2 t
$$

- Now look at the ODE to the second term

$$
f(D) y=t e^{t}
$$

- Since 1 is not a root of the char. eqn.,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Recover the particular solution to the original ODE. By our scenario, we should choose the imagine part of \tilde{P}. Since

$$
\tilde{P}(t)=A t e^{2 i t}=\frac{1}{16} i(\cos 2 t+i \sin 2 t)
$$

the second term won't have an i attached. So we only care about the first term, which then gives

$$
P(t)=\frac{1}{16} \cos 2 t
$$

- Now look at the ODE to the second term

$$
f(D) y=t e^{t}
$$

- Since 1 is not a root of the char. eqn., the first try $P(t)=(A t+B) e^{t}$ would succeed.

Book Problem 4.3.16

- Compute $f(D) P$.

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$. $f(D) P=$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$. $f(D) P=f(D)\left(e^{t}(A t+B)\right)$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t}
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers,

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
f(D) P
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
f(D) P=e^{t}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
f(D) P=e^{t}(4 D+1+8 D+4)
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
f(D) P=e^{t}(4 D+1+8 D+4)(A t+B)
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B) \\
& =e^{t}(12 A+5 A t+5 B)
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B) \\
& =e^{t}(12 A+5 A t+5 B)=t e^{t}
\end{aligned}
$$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B) \\
& =e^{t}(12 A+5 A t+5 B)=t e^{t}
\end{aligned}
$$

So $5 A=1,12 A+5 B=0$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B) \\
& =e^{t}(12 A+5 A t+5 B)=t e^{t}
\end{aligned}
$$

So $5 A=1,12 A+5 B=0 \Rightarrow A=1 / 5, B=-12 A / 5=-12 / 25$

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B) \\
& =e^{t}(12 A+5 A t+5 B)=t e^{t}
\end{aligned}
$$

So $5 A=1,12 A+5 B=0 \Rightarrow A=1 / 5, B=-12 A / 5=-12 / 25$.

- So the particular soution to this part

Book Problem 4.3.16

- Compute $f(D) P$. Note that $f(r)=r^{4}+2 r^{2}$.

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{t}(A t+B)\right) \\
& =e^{t} f(D+1)(A t+B) \\
& =e^{t}\left((D+1)^{4}+4(D+1)^{2}\right)(A t+B) \\
& =e^{t}\left(D^{4}+4 D^{3}+6 D^{2}+4 D+1+4 D^{2}+8 D+4\right)(A t+B)
\end{aligned}
$$

Since we don't care $D^{2}(A t+B)$ and all higher powers, we have

$$
\begin{aligned}
f(D) P & =e^{t}(4 D+1+8 D+4)(A t+B) \\
& =e^{t}(12 D+5)(A t+B) \\
& =e^{t}(12 A+5 A t+5 B)=t e^{t}
\end{aligned}
$$

So $5 A=1,12 A+5 B=0 \Rightarrow A=1 / 5, B=-12 A / 5=-12 / 25$.

- So the particular soution to this part is

$$
P(t)=e^{t}\left(\frac{1}{5} t-\frac{12}{25}\right)
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK:

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 ,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails,

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
f(D) P=
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
f(D) P=f(D) A t^{2}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
f(D) P=f(D) A t^{2}=\left(D^{4}+4 D^{2}\right)
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
f(D) P=f(D) A t^{2}=\left(D^{4}+4 D^{2}\right)\left(A t^{2}\right)
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A t^{2}=\left(D^{4}+4 D^{2}\right)\left(A t^{2}\right) \\
& =0+4(2 A)
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A t^{2}=\left(D^{4}+4 D^{2}\right)\left(A t^{2}\right) \\
& =0+4(2 A)=8 A
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- Finally look at the ODE to the last term,

$$
y^{(4)}+4 y^{\prime \prime}=4
$$

- IMPORTANT REMARK: Here you should treat 4 as $4 e^{0 t}$.
- Since 0 is a root of the char. eqn. with multiplicity 2 , the first try and the second try fails, and the template you should use is $P(t)=A t^{2}$.
- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A t^{2}=\left(D^{4}+4 D^{2}\right)\left(A t^{2}\right) \\
& =0+4(2 A)=8 A=4 \Rightarrow A=1 / 2
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is $P(t)=\frac{1}{2} t^{2}$.

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is $P(t)=\frac{1}{2} t^{2}$.
- And thus the general solution is

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is $P(t)=\frac{1}{2} t^{2}$.
- And thus the general solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is $P(t)=\frac{1}{2} t^{2}$.
- And thus the general solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t+\frac{1}{16} t \cos t
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is $P(t)=\frac{1}{2} t^{2}$.
- And thus the general solution is

$$
\begin{aligned}
y(t)= & C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t+\frac{1}{16} t \cos t \\
& +e^{t}\left(\frac{1}{5} t-\frac{12}{25}\right)
\end{aligned}
$$

Book Problem 4.3.16

Find the general solution to the ODE

$$
y^{(4)}+4 y^{\prime \prime}=\sin 2 t+t e^{t}+4
$$

- So the particular solution to this term is $P(t)=\frac{1}{2} t^{2}$.
- And thus the general solution is

$$
\begin{aligned}
y(t)= & C_{1}+C_{2} t+C_{3} \cos 2 t+C_{4} \sin 2 t+\frac{1}{16} t \cos t \\
& +e^{t}\left(\frac{1}{5} t-\frac{12}{25}\right)+\frac{1}{2} t^{2}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$. So the complementary solution is

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$. So the complementary solution is

$$
y(t)=C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right)
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$. So the complementary solution is

$$
y(t)=C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right)
$$

- Look at the ODE to the first term:

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$. So the complementary solution is

$$
y(t)=C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right)
$$

- Look at the ODE to the first term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$. So the complementary solution is

$$
y(t)=C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right)
$$

- Look at the ODE to the first term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}
$$

Since 1 is not a root of the char. eqn,

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- The characteristic polynomial is

$$
f(r)=r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)
$$

The roots are $r=0,0,-1+i,-1-i$. So the complementary solution is

$$
y(t)=C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right)
$$

- Look at the ODE to the first term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}
$$

Since 1 is not a root of the char. eqn, the first try $P(t)=A e^{t}$ would succeed.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
f(D) P=
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
f(D) P=f(D) A e^{t}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
f(D) P=f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly,

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly, you don't need exponential shift law here!)

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly, you don't need exponential shift law here!)

- So the particular solution for the first term

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly, you don't need exponential shift law here!)

- So the particular solution for the first term is $P(t)=3 / 5 e^{t}$.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly, you don't need exponential shift law here!)

- So the particular solution for the first term is $P(t)=3 / 5 e^{t}$.
- Look at the ODE to the second term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 t e^{-t}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly, you don't need exponential shift law here!)

- So the particular solution for the first term is $P(t)=3 / 5 e^{t}$.
- Look at the ODE to the second term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 t e^{-t}
$$

Since -1 is not a root to the char. eqn.,

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D) A e^{t}=\left(D^{4}+2 D^{3}+2 D^{2}\right) A e^{t} \\
& =(A+2 A+2 A) e^{t}=5 A e^{t}=3 e^{t} \Rightarrow A=3 / 5
\end{aligned}
$$

(Don't be silly, you don't need exponential shift law here!)

- So the particular solution for the first term is $P(t)=3 / 5 e^{t}$.
- Look at the ODE to the second term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=2 t e^{-t}
$$

Since -1 is not a root to the char. eqn., the first try $P(t)=(A t+B) e^{-t}$ would succeed.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:
$f(D) P$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
f(D) P=f(D)\left(e^{-t}(A t+B)\right)
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B) \\
& =e^{-t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B) \\
& =e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B) \\
& =e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B) \\
& =e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
& =e^{-t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B) \\
& =e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
& =e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1\right.
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P & =f(D)\left(e^{-t}(A t+B)\right) \\
& =e^{-t} f(D-1)(A t+B) \\
& =e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
& =e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right.
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B) \\
= & e^{-t}(-2 A+A t+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B) \\
= & e^{-t}(-2 A+A t+B)=e^{-t}(A t-2 A+B)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B) \\
= & e^{-t}(-2 A+A t+B)=e^{-t}(A t-2 A+B)=2 t e^{-t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B) \\
= & e^{-t}(-2 A+A t+B)=e^{-t}(A t-2 A+B)=2 t e^{-t}
\end{aligned}
$$

So $A=2,-2 A+B=0$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B) \\
= & e^{-t}(-2 A+A t+B)=e^{-t}(A t-2 A+B)=2 t e^{-t}
\end{aligned}
$$

So $A=2,-2 A+B=0 \Rightarrow B=4$.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) P$:

$$
\begin{aligned}
f(D) P= & f(D)\left(e^{-t}(A t+B)\right) \\
= & e^{-t} f(D-1)(A t+B) \\
= & e^{-t}\left((D-1)^{4}+2(D-1)^{3}+2(D-1)^{2}\right)(A t+B) \\
= & e^{-t}\left(D^{4}-4 D^{3}+6 D^{2}-4 D+1+2\left(D^{3}-3 D^{2}+3 D-1\right)\right. \\
& \left.+2\left(D^{2}-2 D+1\right)\right)(A t+B) \\
= & e^{-t}(-4 D+1+2(3 D-1)+2(-2 D+1))(A t+B) \\
= & e^{-t}(-2 D+1)(A t+B) \\
= & e^{-t}(-2 A+A t+B)=e^{-t}(A t-2 A+B)=2 t e^{-t}
\end{aligned}
$$

So $A=2,-2 A+B=0 \Rightarrow B=4$.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

- Complexify:

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

- Complexify:

$$
\tilde{y}^{(4)}+2 \tilde{y}^{\prime \prime \prime}+2 \tilde{y}^{\prime \prime}=e^{-t} e^{i t}=e^{(-1+i) t}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

- Complexify:

$$
\tilde{y}^{(4)}+2 \tilde{y}^{\prime \prime \prime}+2 \tilde{y}^{\prime \prime}=e^{-t} e^{i t}=e^{(-1+i) t}
$$

And we will need the imaginary part.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

- Complexify:

$$
\tilde{y}^{(4)}+2 \tilde{y}^{\prime \prime \prime}+2 \tilde{y}^{\prime \prime}=e^{-t} e^{i t}=e^{(-1+i) t}
$$

And we will need the imaginary part.

- Since $-1+i$ is a root to the char. eqn.,

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

- Complexify:

$$
\tilde{y}^{(4)}+2 \tilde{y}^{\prime \prime \prime}+2 \tilde{y}^{\prime \prime}=e^{-t} e^{i t}=e^{(-1+i) t}
$$

And we will need the imaginary part.

- Since $-1+i$ is a root to the char. eqn., the first try would fail

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So the particular solution to the second part is $P(t)=(2 t+4) e^{-t}$.
- Look at the ODE to the third term:

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=e^{-t} \sin t
$$

- Complexify:

$$
\tilde{y}^{(4)}+2 \tilde{y}^{\prime \prime \prime}+2 \tilde{y}^{\prime \prime}=e^{-t} e^{i t}=e^{(-1+i) t}
$$

And we will need the imaginary part.

- Since $-1+i$ is a root to the char. eqn., the first try would fail and the second try $\tilde{P}(t)=A t e^{(-1+i) t}$ would succeed.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
f(D) \tilde{P}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
f(D) \tilde{P}=f(D)\left(e^{(-1+i) t} A t\right)
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(1-1-2 i)(2 i A)
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(1-1-2 i)(2 i A) \\
& =e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(1-1-2 i)(2 i A) \\
& =e^{(-1+i) t} 4 A
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(1-1-2 i)(2 i A) \\
& =e^{(-1+i) t} 4 A=e^{(-1+i) t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(1-1-2 i)(2 i A) \\
& =e^{(-1+i) t} 4 A=e^{(-1+i) t} \Rightarrow 4 A=1
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- Compute $f(D) \tilde{P}$. Notice $f(r)=r^{2}(r+1+i)(r+1-i)$:

$$
\begin{aligned}
f(D) \tilde{P} & =f(D)\left(e^{(-1+i) t} A t\right) \\
& =e^{(-1+i) t} f(D-1+i) A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) D A t \\
& =e^{(-1+i) t}(D-1+i)^{2}(D+2 i) A \\
& =e^{(-1+i) t}(D-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(-1+i)^{2}(2 i A) \\
& =e^{(-1+i) t}(1-1-2 i)(2 i A) \\
& =e^{(-1+i) t} 4 A=e^{(-1+i) t} \Rightarrow 4 A=1 \Rightarrow A=1 / 4
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

$$
P(t)=\frac{1}{4} t e^{-t} \sin t
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

$$
P(t)=\frac{1}{4} t e^{-t} \sin t
$$

is a particular solution for the ODE to the third term.

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

$$
P(t)=\frac{1}{4} t e^{-t} \sin t
$$

is a particular solution for the ODE to the third term.

- Then the general solution to our ODE is

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

$$
P(t)=\frac{1}{4} t e^{-t} \sin t
$$

is a particular solution for the ODE to the third term.

- Then the general solution to our ODE is

$$
y(t)=C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right)
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

$$
P(t)=\frac{1}{4} t e^{-t} \sin t
$$

is a particular solution for the ODE to the third term.

- Then the general solution to our ODE is

$$
\begin{aligned}
y(t)= & C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right) \\
& +3 / 5 e^{t}+(2 t+4) e^{-t}
\end{aligned}
$$

Book Problem 4.3.18

Find the general solution to the ODE

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

- So

$$
\tilde{P}(t)=\frac{1}{4} t e^{(-1+i) t}=\frac{1}{4} t e^{-t}(\cos t+i \sin t)
$$

- So the imaginary part

$$
P(t)=\frac{1}{4} t e^{-t} \sin t
$$

is a particular solution for the ODE to the third term.

- Then the general solution to our ODE is

$$
\begin{aligned}
y(t)= & C_{1}+C_{2} t+e^{-t}\left(C_{3} \cos t+C_{4} \sin t\right) \\
& +3 / 5 e^{t}+(2 t+4) e^{-t}+\frac{1}{4} t e^{-t} \sin t
\end{aligned}
$$

Remarks

- For computing the term $f(D) P$,

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases.

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation,

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular,

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation.

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it,

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$,

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
(a+b)^{2}
$$

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}
\end{aligned}
$$

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}
\end{aligned}
$$

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Certainly there exists a general pattern,

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+2 a b+b^{2} \\
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{4} & =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Certainly there exists a general pattern, namely the beautiful binomial expansion theorem.

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Certainly there exists a general pattern, namely the beautiful binomial expansion theorem. Please read the following interesting webpage

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+2 a b+b^{2} \\
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{4} & =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Certainly there exists a general pattern, namely the beautiful binomial expansion theorem. Please read the following interesting webpage on a website called "mathisfun"

Remarks

- For computing the term $f(D) P$, there does not exist a way that is convenient for all the cases. Depending on the situation, one might need to choose different ways.
- In particular, the exponential-shift law is used to simplify the computation. If it is simpler not to use it, then don't use it.
- For $(a+b)^{n}$, here are some formulas you should know

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Certainly there exists a general pattern, namely the beautiful binomial expansion theorem. Please read the following interesting webpage on a website called "mathisfun" http://www.mathsisfun.com/algebra/binomial-theorem.html

The End

